湖南省长沙市望城区白箬中学高三数学第二轮专题讲座复习 处理具有单调性、奇偶性函数问题的方法(1)


湖南省长沙市望城区白箬中学高三数学第二轮专题讲座复习: 处理具 有单调性、奇偶性函数问题的方法(1)
高考要求 函数的单调性、奇偶性是高考的重点内容之一,考查内容灵活多样 特别是两性质的 应用更加突出 本节主要帮助考生深刻理解奇偶性、单调性的定义,掌握判定方法,正 确认识单调函数与奇偶函数的图象 帮助考生学会怎样利用两性质解题,掌握基本方法, 形成应用意识 重难点归纳 (1)判断函数的奇偶性与单调性 若为具体函数,严格按照定义判断,注意变换中的等价性 若为抽象函数,在依托定义的基础上,用好赋值法,注意赋值的科学性、合理性 同时,注意判断与证明、讨论三者 的区别,针对所 列的训练认真体会,用好数与形的 统一 复合函数的奇偶性、单调性 问题的解决关键在于 既把握复合过程,又掌握基本函 数 (2)加强逆向思维、数形统一 正反结合解决基本应用题目 (3)运用奇偶性和单调性去解决有关函数的综合性题目 此类题目要求考生必须具有 驾驭知识的能力,并具有综合分析问题和解决问题的能力 (4)应用问题 在利用函数的奇偶性和单调性解决实际问题的过程中,往往还要用到等 价转化和数形结合的思想方法, 把问题中较复杂、 抽象的式子转化为基本的简单的式子去解 决 特别是 往往利用函数的单调性求实际应用题中的最值问题 典型题例示范讲解 2 例 1 已知奇函数 f(x)是定义在(-3, 3)上的减函数, 且满足不等式 f(x-3)+f(x -3)<0,
新疆
源头学子 小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

设不等式解集为 A,B=A∪{x|1≤x≤ 5 },求函数 g(x)=-3x +3x-4(x∈B)的最大值
新疆
源头学子 小屋
http://www.xjktyg.com/wxc/

2

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

命题意图 本题属于函数性质的综合性题目,考生必须具有综合运用知识分析和解决 问题的能力 知识依托 主要依据函数的性质去解决问题 错解分析 题目不等式中的“f”号如何去掉是难点,在求二次函数在给定区间上的最 值问题时,学生 容易漏掉定义域 技巧与方法 借助奇偶性脱去“f”号,转化为 x 的不等式,利用数形结合进行集合运 算和求最值
特级教师 王新敞
wxckt@126.com

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/



新疆
源头学子 小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆
源头学子 小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

?? 3 ? x ? 3 ? 3 ?0 ? x ? 6 得? 由? 且 x≠0,故 0<x< 6 , 2 ?? 3 ? x ? 3 ? 3 ?? 6 ? x ? 6
2 2

又∵f(x)是奇函数,∴f(x-3)<-f(x -3)=f(3-x ),又 f(x)在(-3,3)上是减函数, ∴x-3>3-x ,即 x +x-6>0,解得 x>2 或 x<-3,综上得 2<x< 6 ,即 A={x|2<x< 6 }, ∴B=A∪{x|1≤x≤ 5 }={x|1≤x< 6 },又 g(x)=-3x +3x-4=-3(x-
新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com http://www.xjktyg.com/wxc/

2

2

2

1 2 13 ) - 知 g(x)在 B 2 4

上为减函数,∴g(x)max=g(1)=-4 例 2 已知奇函数 f(x)的定义域为 R,且 f(x)在[0,+∞)上是增函数,是否存在实数 m,
新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com http://www.xjktyg.com/wxc/

1

使 f(cos2θ -3)+f(4m-2mcosθ )>f(0)对所有θ ∈[0,
新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com http://www.xjktyg.com/wxc/

? ]都成立?若存在,求出符合条 2

件的所有实数 m 的范围,若不存在,说明理由 命题意图 本题属于探索性问题,主要考查考生的综合分析能力和逻辑思维能力以及 运算能力 知识依托 主要依据函数的单调性和奇偶性,利用等价转化的思想方法把问 题转化为 二次函数在给定区间上的最值问题 错解分析 考生不易运用函数的综合性质去解决问题,特别不易考虑运用等价转化的 思想方法 技巧与方法 主要运用等价转化的思想和分类讨论的思想来解决问题 解 ∵f(x)是 R 上的奇函数,且在[0,+∞)上是增函数,∴f(x)是 R 上的增函数 于 是不等式可等价地转化为 f(cos2θ -3)>f(2mcosθ -4m), 2 即 cos2θ -3>2mcosθ -4m,即 cos θ -mcosθ +2m-2>0 设 t=cosθ ,则问题等价地转化为函数
新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com http://www.xjktyg.com/wxc/

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

g(t)?=t2-mt+2m-2=(t-

m 2 m2 )- +2m-2 在[0,1]上的值恒为正,又转化为函数 4 2
新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com http://www.xjktyg.com/wxc/

g(t)在[0,1]上的最小值为正 m ∴当 <0,即 m<0 时,g(0)=2m-2>0 ? m>1 与 m<0 不符; 2 m2 m 当 0≤ ≤1 时,即 0≤m≤2 时,g(m)=- +2m-2>0 ? 4-2 2 <m<4+2 2 , 4 2
新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com http://www.xjktyg.com/wxc/

?∴4-2 2 <m≤2 当

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

m >1,即 m>2 时,g(1)=m-1>0 ? m>1 2

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

∴m>2

综上,符合题目要求的 m 的值存在,其取值范围是 m>4-2 2 另法(仅限当 m 能够解出的情况)
新疆
源头学子 小屋
http://www.xjktyg.com/wxc/

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

? ]恒成立, 2 ? ? 2 2 等价于 m>(2-cos θ )/(2-cosθ ) 对于θ ∈ [0, ] 恒成立∵当θ ∈ [0, ] 时, (2-cos 2 2
特级教师 王新敞
wxckt@126.com

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

cos θ -mcosθ +2m-2>0 对于θ ∈[0,

2

θ )/(2-cosθ ) ≤4-2 2 ,∴m>4-2 2

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

例 3 已知偶函数 f(x)在(0,+∞)上为增函数,且 f(2)=0, 2 解不等式 f[log2(x +5x+4)]≥0 ? 2 解 ∵f(2)=0,∴原不等式可化为 f[log2( x +5x+4)]≥f(2) 又∵f(x)为偶函数,且 f(x)在(0,+∞)上为增函数,∴f(x)在(-∞,0)上为减函数且 f(-2)=f(2)=0 2 ∴不等式可 化为 log2(x +5x+4)≥2 ① 2 或 log2(x +5x+4)≤-2 ② 2 由①得 x +5x+4≥4,∴x≤-5 或 x≥0 ③
新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

? 5 ? 10 ? 5 ? 10 1 得 ≤x<-4 或-1<x≤ 2 2 4 由③④得原不等式的解集为
由②得 0<x +5x+4≤
2



2

{x |x ≤-5 或
新疆
源头学子 小屋
http://www.xjktyg.com/wxc/

? 5 ? 10 ? 5 ? 10 ≤x≤-4 或-1<x≤ 或 x≥0} 2 2
特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

学生巩固练习 1 设 f(x)是(-∞,+∞)上的奇函数,f(x+2)=-f(x),当 0≤x≤1 时,f(x)=x,则 f(7 5) 等于( ) A 0 5 B -0 5 C 1 5 D -1 5 2 2 已知定义域为(-1,1)的奇函数 y=f(x)又是减函数,且 f(a-3)+f(9-a )<0,?则 a 的 取值范围是( )
新疆
源头学子 小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

http://www.xjktyg.com/wxc/

http://www.xjktyg.com/wxc/

http://www.xjktyg.com/wxc/

http://www.xjktyg.com/wxc/

http://www.xjktyg.com/wxc/

http://www.xjktyg.com/wxc/

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

http://www.xjktyg.com/wxc/

http://www.xjktyg.com/wxc/

http://www.xjktyg.com/wxc/

http://www.xjktyg.com/wxc/

http://www.xjktyg.com/wxc/

http://www.xjktyg.com/wxc/

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

A 3 4
新疆 源头学子小屋
http://www.xjktyg.com/wxc/

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

(2 2 ,3)

B

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

(3, 10 ) C

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

(2 2 ,4)

D

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

(-2,3)
新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

若 f(x)为奇函数, 且在(0, +∞)内是增函数, f(-3)=0,则 xf(x)<0 的解集为_________ 又 如果函数 f(x)在 R 上为奇函数,在(-1,0)上是增函数,且 f(x+2)=-f(x),试比较
新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com http://www.xjktyg.com/wxc/

1 2 f( ),f( ),f(1)的大小关系_________ 3 3 5 已知 f(x)是偶函数而且在(0,+∞)上是减函数,判断 f(x)在(-∞,0)上的增减性并加
新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

以证明 6
新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

已知 f(x)=

a ? 2x ?1 (a∈R)是 R 上的奇函数, 1? 2x

(1)求 a 的值; -1 (2)求 f(x)的反函数 f (x); (3)对任意给定的 k∈R ,解不等式 f (x)>lg 7
新疆 源头学子小屋
http://www.xjktyg.com/wxc/

+

-1

1? x k

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

定义在(-∞,4] 上的减函数 f(x)满足 f(m-sinx)≤f( 1? 2m -
新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com http://www.xjktyg.com/wxc/

7 2 +cos x)对任意 x∈R 4

都成立,求实数 m 的取值范围 参考答案: 1 解析 f(7.5)=f(5.5+2)=-f(5.5)=-f(3.5+2)=f(3.5)=f(1.5+2) =-f(1.5)=-f(-0.5+2)=f(-0.5)=-f(0.5)=-0.5 答案 B 2 2 解析 ∵f(x)是定义在(-1,1)上的奇函数又是减函数,且 f(a-3)+f(9-a )<0
新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com http://www.xjktyg.com/wxc/

新疆

源头学子 小屋

http://www .xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

新疆

源头学子 小屋

http://www .xjktyg.com/wxc/

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆

源头学子 小屋

http://www .xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

新疆

源头学子 小屋

http://www .xjktyg.com/wxc/

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

特级教师 王新敞
wxckt@126.com

∴f(a-3)<f(a -9)

2

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

?? 1 ? a ? 3 ? 1 ? ∴ ?? 1 ? a 2 ? 9 ? 1 ? 2 ?a ? 3 ? a ? 9

∴a∈(2 2 ,3)

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

答案

新疆
源头学子 小屋
http://w ww .xjktyg.com/w xc/

特级教师 王新敞
w xckt@126.com

新疆
源头学子 小屋
http://w ww .xjktyg.com/w xc/

特级教师 王新敞
w xckt@126.com

A

3

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

解析

新疆
源头学子 小屋
http://www .xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆
源头学子 小屋
http://www .xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

由题意可知

新疆
源头学子 小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆
源头学子 小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

?x ? 0 ?x ? 0 或? xf(x)<0 ? ? ? f ( x) ? 0 ? f ( x) ? 0

?x ? 0 ?x ? 0 ?x ? 0 ?x ? 0 ?? 或? ?? 或? ∴x∈(-3,0)∪(0,3) ? f ( x ) ? f ( ?3) ? f ( x ) ? f (3) ? x ? ?3 ? x ? 3
4
新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

解析

1 1 2 2 )=-f(- ),f( )=-f(- ),f(1)=-f(-1), 3 3 3 3 1 2 又 f(x)在(-1,0)上是增函 数且- >- >-1 3 3
新疆
源头学子 小屋
http://www .xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆

源头学子 小屋

http://www .xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

∵f(x)为 R 上的奇函数∴f(

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

3

1 2 1 2 1 2 )>f(- )>f(-1),∴f( )<f( )<f(1) 答案 f( )<f( )<f(1) 3 3 3 3 3 3 5 解 函数 f(x)在(-∞,0)上是增函数,设 x1<x2<0,因为 f(x)是偶函数,所以 f(- x1)=f(x1),f(-x2)=f(x2),由假设可知-x1>-x2>0,又已知 f(x)?在(0,+∞)上是减函数,于 是有 f(-x1)<f(-x2),即 f(x1)<f(x2),由此可知,函数 f(x)在(-∞,0)上是增函数 6 解 (1)a=1
∴f(-
新疆
源头学子 小屋
http://www.xjktyg.com/wxc/

新疆

源头学子 小屋

http://www .xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

新疆

源头学子 小屋

http://www .xjktyg.com/wxc/

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

(2)f(x)=

2x ?1 1? x --1 (x∈R) ? f (x)=log2 (-1<x<1 ) x 2 ?1 1? x

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

1? x 1? x >log2 ? log2(1-x)<log2k,∴当 0<k<2 时,不等式解集为{x|1 k 1? x -k<x<1 } ;当 k≥2 时,不等式解集为{x|-1<x<1 }
(3)由 log2
新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

7解
新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com http://www.xjktyg.com/wxc/

新疆
源头学子 小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

新疆
源头学子 小屋
http://www.xjktyg.com/wxc/

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

? ?m ? sin x ? 4 ?m ? 4 ? sin x ? 7 ? ? 2 ,对 x∈R 恒成立, 即? ? 1 ? 2m ? ? cos x ? 4 7 2 4 ? ?m ? 1 ? 2m ? 4 ? ? sin x ? sin x ? 1 ? 7 ? m ? sin x ? 1 ? 2m ? ? cos 2 x ? ? 4
?m ? 3 ? ?? 3 1 ?m ? 2 或m ? 2 ?

∴m∈[

3 1 ,3]∪{ } 2 2

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

4


相关文档

湖南省长沙市望城区白箬中学高三数学第二轮专题讲座复习 处理具有单调性、奇偶性函数问题的方法(2)
湖南省长沙市望城区白箬中学高三数学第二轮专题讲座复习 关于求空间距离的问题
湖南省长沙市望城区白箬中学高三数学第二轮专题讲座复习 化归思想
湖南师范大学附属中学高三数学总复习课件第4课时 三角函数的单调性、奇偶性、周期性
湖南省长沙市长郡中学高考数学(理)一轮复习课件:《第二章第三节函数的奇偶性及周期性 第四节函数的图象
湖南省湘潭凤凰中学高三数学一轮复习强化训练(函数的单调性)(无答案)
湖南省湘潭凤凰中学高三数学复习题(第五节三角函数的奇偶性对称性)(无答案)
湖南省长沙市望城区白箬中学高三数学第二轮专题讲座复习 二次函数、二次方程及二次不等式的关系高考要求
白箬中学高三数学第二轮专题讲座复习 综合运用等价转化、分类讨论、数形结合等思想解决函数综合问题
湖南省长沙市长郡中学2016届高三数学一轮复习 粗细考点精讲 第一章 集合与函数的概念
电脑版