2018-2019学年高中数学人教版A版必修一学案:第一单元 习题课 集合及其运算


数学 习题课 学习目标 运算. 集合及其运算 1.理解集合的相关概念,会判断集合间的关系(难点、重点).2.会进行集合间的 1.设集合 A={x|-1<x<2},集合 B={x|1<x<3},则 A∪B 等于( A.{x|-1<x<3} C.{x|1<x<2} 解析 答案 借助数轴知 A∪B={x|-1<x<3}. A ) B.{x|-1<x<1} D.{x|2<x<3} ) 2.设 A={x|x=2k,k∈Z},B={x|x=2k+1,k∈Z},则( A.A?B 解析 答案 B.B?A C.A∩B=? D.A∪B=R 易知 A 是偶数集,B 是奇数集,故 A∩B=?. C 3.若 U={1,2,3,4,5,6,7,8},A={1,2,3},B={5,6,7},则(?UA)∩(?UB)=________. 解析 答案 (?UA)∩(?UB)={4,5,6,7,8}∩{1,2,3,4,8}={4,8}. {4,8} 4.已知集合 A={x|x2+2x-2a=0},若 A=?,则实数 a 的取值范围是________. 解析 答案 1 由题意得方程 x2+2x-2a=0 无实数根,故 Δ=22+8a<0,解得 a<- . 2 1 {a|a<- } 2 类型一 集合的基本概念 【例 1】 (1)设集合 A={1,2,4}, 集合 B={x|x=a+b, a∈A, b∈A}, 则集合 B 中有________ 个元素. A.4 B.5 C.6 D.7 ) (2)已知集合 A={0,1,2},则集合 B={x-y|x∈A,y∈A}中元素的个数是( A.1 解析 B.3 C.5 D.9 (1)∵a∈A,b∈A,x=a+b,所以 x=2,3,4,5,6,8,∴B 中有 6 个元素,故选 C. (2)当 x=0,y=0 时,x-y=0;当 x=0,y=1 时,x-y=-1; 当 x=0,y=2 时,x-y=-2;当 x=1,y=0 时,x-y=1; 当 x=1,y=1 时,x-y=0;当 x=1,y=2 时,x-y=-1; 数学 当 x=2,y=0 时,x-y=2;当 x=2,y=1 时,x-y=1; 当 x=2,y=2 时,x-y=0.根据集合中元素的互异性知,B 中元素有 0,-1,-2,1,2, 共 5 个. 答案 (1)C (2)C 与集合中的元素有关问题的求解策略 规律方法 (1)确定集合的元素是什么,即集合是数集还是点集. (2)看这些元素满足什么限制条件. (3)根据限制条件列式求参数的值或确定集合中元素的个数,但要注意检验集合是否满足 元素的互异性. 【训练 1】 ( ) A.1 B.3 C.4 D.6 (2)已知集合 M={1,m+2,m2+4},且 5∈M,则 m 的值为________. 解析 (1)易知 A={1,2},又 A∪B={0,1,2},所以集合 B 可以是: (1)设集合 A={x|x2-3x+2=0},则满足 A∪B={0,1,2}的集合 B 的个数是 {0},{0,1},{0,2},{0,1,2}. (2)当 m+2=5 时,m=3,M={1,5,13},符合题意; 当 m2+4=5 时,m=1 或 m=-1,若 m=1,M={1,3,5},符合题意;若 m=-1,则 m +2=1,不满足元素的互异性,故 m=3 或 1. 答案 类型二 【例 2】 (1)C (2)3 或 1 集合间的基本关系 (1)已知集合 A={x|x2-3x+2=0,x∈R},B={x|0<x<5,x∈N

相关文档

2018-2019学年最新高中数学人教版A版必修一学案:第一单元 习题课 集合及其运算
2018版高中数学人教版a版必修一学案:第一单元 习题课 集合及其运算含答案
2018版高中数学人教版a版必修一学案:第一单元 习题课 集合及其运算 含答案
2018高中数学人教版A版必修一学案:第一单元 习题课 集合及其运算(附答案)
2018年高中数学必修一学案 人教版A版 第一单元 习题课 集合及其运算 Word版含答案
2018版高中数学人教版A版必修一学案:第一单元 习题课 集合及其运算 Word版含答案
2018-2019版高中数学人教版A版必修一课件:第一单元 习题课 集合及其运算
2018-2019学年最新高中数学人教版A版必修一学案:第一单元 1.1.2 集合间的基本关系
2018-2019学年高中数学人教版A版必修一学案:第一单元 1.1.2 集合间的基本关系
2018-2019学年最新高中数学人教版A版必修一学案:第一单元 习题课 函数的概念与性质
电脑版