CDMA技术与3G系统中的功率控制问题

作者: 作者:潘兆辉 1 3G 中的 CDMA 技术 3G 的三大技术体系标准分别是 UMTS 的 WCDMA、IMT2000 的 CDMA2000 和 我国拥有自主知识产权的 TD-SCDMA。 WCDMA 又称为宽带 CDMA(带宽为 5MHz 或更高),CDNA2000 是在 IS95(带宽 为 1.23MHz 的 2GCDMA)基础上直接演进而来,TD—SCDMA 又称为时分同步 CDMA,这里的同步指的是所有终端用户上行链路的信号在到达基站接收端的解调 器时完全同步。总之,3G 的三大标准均以 CDMA 为基础技术。 CDMA 技术是 1949 年由 ClaudeShannon 首先提出来的。CDMA 码分多址技术实 质上是基于扩频通信的技术,其扩频通信原理可用传输速率、带宽和信噪比之间关 系的数学公式:Csh=Brf*LOG2(1+Eb/Io)来表示。CDMA 提出后一直只应用在军事 领域中的抗干扰通信。 1978 年 Cooper 等人提出了在蜂窝移动通信中使用 CDMA 扩频技术的设想, 但并 未引起业界的重视, 只有美国 Qullcomm(高通)公司投入了一定力量进行商用化研究, 并于 1989 年成功地进行了第一次商用化测试。两年之后,高通公司全面掌握了 CDMA 系统商用化的核心技术,从而使 CDMA 蜂窝移动电话商用系统于 1996 年 1 月在世界上首次成功推出。鉴于 CDMA 技术有光明的发展前景,因此,3G 技术体 系纷纷采用了以 CDMA 技术为基础的技术体系标准。 与 FDMA 和 TDMA 相比,CDMA 具有许多独特的优点,归纳起来,CDMA 应用 于数字移动通信的优点有: ·系统容量大。在 CDMA 系统中所有用户共用一个无线信道,当用户不讲话时, 该信道内的所有其他用户会由于干扰减小而得益。因此利用人类话音特点的 CDMA 系统可大幅降低相互干扰,增大其实际容量近 3 倍。CDMA 数字移动通信网的系统 容量理论上比模拟网大 20 倍,实际上比模拟网大 10 倍,比 GSM 大 4-5 倍。

·系统通信质量更佳。软切换技术(先连接再断开)可克服硬切换容易掉话的缺点, CDMA 系统工作在相同的频率和带宽上,比 TDMA 系统更容易实现软切换技术, 从而提高通信质量,CDMA 系统采用确定声码器速率的自适应阈值技术,强有力的 误码纠错,软切换技术和分离分多径分集接收机,可提供 TDMA 系统不能比拟的, 极高的数据质量。频率规划灵活,用户按不同的序列码区分,不同 CDMA 载波可在 相邻的小区内使用,因此 CDMA 网络的频率规划灵活,扩展简单。CDMA 网络同 时还具有建造运行费用低,基站设备费用低的特点,因而用户费用也较低。 ·频带利用率高。CDMA 是一种扩频通信技术,尽管扩频通信系统抗干扰性能的提 高是以占用频带带宽为代价的, CDMA 允许单一频率在整个系统区域内重复使用 但 (即复用系数为 1),即多用户共用这一频带同时通话,大大提高了频带利用率。这种 扩频 CDMA 方式,虽要占用较宽的频带,但按每个用户占用的平均频带来计算,其 频带利用率是很高的。CDMA 系统还可以根据不同信号速率的情况,提供不同的信 道频带动态利用,使给定频带得到更有效的利用。 ·适用于多媒体通信系统。CDMA 系统能方便地使用多 CDMA 信道方式和多 CDMA 帧方式,传送不同速率要求的多媒体业务信息,处理方式和合成方式都比 TDMA 方式和 FDMA 方式灵活、简便、有利于多媒体通信系统的应用,比如可以在 提供话音服务的同时提供数据服务,使得用户在通话时也可以接收寻呼信息。 ·CDMA 手机的备用时间更长。低平均功率、高效的超大规模集成电路设计和先 进的锂电池的结合显示了 CDMA 在便携式电话应用中的突破。 用户可长时间地使用 手机接收电话,也可在不挂机情况下接收短消息。然而,宽带 CDMA 系统的应用也 还面临着一些技术困难,多址干扰的降低和抵消是 CDMA 的基本课题,也是提高宽 带 CDMA 系统容量,发挥其系统特长的重要课题。其中最重要的问题之一就是功率 控制问题。 2 功率控制问题的由来 功率控制问题的由来

CDMA 技术构建的蜂窝移动通信系统, 终端用户都采用相同的频谱进行上下行链 路的数据传输,每一个频谱信道都不是完全正交而是近似正交的,因而用户与用户 之间存在干扰。每一个用户都是本小区内及相邻小区内同时进行通信的用户的干扰 源。以宽带 CDMA 即 WCDMA 技术标准为例,基站覆盖的小区存在“远近效应”, 这与通信用户进行通信时的信道功率有关。”远近效应”的具体描述是离基站远的用 户到达基站的信号较弱,离基站近的用户到达基站的信号强,假定终端用户以相同 的上行功率进行通信,则由于信号在信道中传输距离的远近差异,基站处收到的信 号强度的差别可以达到 30-70db, 信号弱的用户的信号完全有可能被信号强的用户信 号淹没,从而造成较远距离的用户完不成通信过程,严重时有可造成整个系统的崩 溃。因此,有必要采取措施对用户终端的信号功率进行控制。另外,为了使基站发 射的功率在到达每个用户终端时有个合理的值,也有必要优化基站的发射功率,换 言之,基站也要加入到功率控制的框架中来。 3 功率控制的分类及具体实现 功率控制分为前向功率控制和反向功率控制,反向功率控制又分为开环功率控制 和闭环功率控制,闭环功率控制再细分为外环功率控制和内环功率控制。现分别描 述如下。 前向功率控制指基站周期性地调低其发射到用户终端的功率值,用户终端测量误 帧率,当误帧率超过预定义值时,用户终端要求基站对它的发射功率增加 1%。每 隔一定时间进行一次调整,用户终端的报告分为定期报告和门限报告。 反向功率控制在没有基站参与的时候为开环功率控制。用户终端根据它接收到的 基站发射功率,用其内置的 DSP 数据信号处理器计算 Eb/Io,进而估算出下行链路 的损耗以调整自己的发射功率。开环功率控制的主要特点是不需要反馈信息,因此 在无线信道突然变化时,它可以快速响应变化,此外,它可以对功率进行较大范围 的调整。开环功率控制不够精确,这是因为开环功控的衰落估计准确度是建立在上 行链路和下行链路具有一致的衰落情况下的, 但是由于频率双工 FDD 模式中,上下

行链路的频段相差 190MHz,远远大于信号的相关带宽,所以上行和下行链路的信 道衰落情况是完全不相关的,这导致开环功率控制的准确度不会很高,只能起到粗 略控制的作用。WCDMA 协议中要求开环功率控制的控制方差在 10dB 内就可以接 受。 反向功率控制在有基站参与的时候为闭环功率控制。其过程是基站对接收到的用 户终端反向开环功率估算值作出调整,以便使用户终端保持最理想的发射功率。功 率控制的实现是在业务信道帧中插入功率控制比特,插入速率可达 1.6Kb/s,这 样可有效跟踪快衰落的影响。其中“0”比特指示用户终端增加发射功率;“1”比特指 示用户终端减少发射功率。闭环功率控制的调整永远落后于测量时的状态值,如果 在这段时问内通信环境发生大的变化,有可能导致闭环的崩溃,所以功率控制的反 馈延时不能太长,一般的意见是由通信本端的某一时隙产生的功率控制命令应该在 两个时隙内回馈。 闭环功率控制由内环功率控制和外环功率控制两部分组成。在信噪比测量中,很 难精确测量信噪比的绝对值。且信噪比与误码率(误块率)的关系随环境的变化而变 化,是非线性的。比如,在一种多径传播环境时,要求百分之一的误块率(BLER), 信噪比(SIR)是 5dB,在另一种多径环境下,同样要求百分之一的误块率,可能需要 5. 5dB 信噪比。 而最终接入网提供给 NAS 的服务中 QoS 表征量为 BLER, 而非 SIR, 业务质量主要通过误块率来确定的,二者是直接的关系,而业务质量与信噪比之间 则是间接的关系。所以在采用内环功控的同时还需要外环功控。 在外环闭环功率控制中,基站每隔 20ms 为接收器的每一个帧规定一个目标 Eb/ Io(从用户终端到基站),当出现帧误差时,该 Eb/Io 值自动按 0.2~0.3 为单位逐 步减少,或增加 3~5db。在这里只有基站参与。外环功率控制的周期一般为 TTI(10ms、20ms、40ms、80ms)的量级,即 10-100Hz。外环功率控制通过闭环控制, 可以间接影响系统容量和通信质量,所以不可小视。

在内环闭环功率控制中,基站每隔 1.25ms 比较一次反向信道的 Eb/Io 和目标 Eb/Io,然后指示移动台降低或增加发射功率,这样就可达到目标 Eb/Io。内环功 率控制是快速闭环功率控制,在基站与移动台之间的物理层进行。 下面给出具体的说明:

·刚进入接入信道时(闭环校正尚未激活) 平均输出功率(dbm)=-平均输入功率(dbm)-Pcon+NOM_PWR(db)+INIT_PWR(db), 其中:平均功率是相对于宽带 CDMA(5MHz)的标称信道带宽而言。 INIT_PWR 是对第一个接入信道序列所需作的调整; NOM_PWR 是为了补偿由于 前向 CDMA 信道和反向 CDMA 信道之间不相关造成的路径损耗。 ·其后的试探序列不断增加发射功率(步长为 PWR_STEP), 直到收到一个效应或序 列结束。输出的功率电平为: 平均输出功率(dbm)=-平均输入功率 (dbm)Pcon+NOM_PWR(db)+INIT_PWR+PWR_STEP 之和(db)。 ·在反向业务信道开始发送之后一旦收到一个功率控制比特, 移动台的平均输出功 率变为: 平均输出功率(dbm)=-平均输入功率 (dbm)-Pcon+NOM_PWR(db)+INIT_PWR+PWR_STEP 之和(db)+所有闭环功率校正 之和(db): 其中: Pcon 为一个常数修正值, 这由多种系统参数决定。 NOM_PWR 与 INIT_PWR 以及 PWR_STEP 也有一定的数值限定范围。 4 总结

针对 3G 移动技术体系标准普遍使用 CDMA 作为基础技术,要想在 3G 系统中真 正发挥 3G 容量大、服务质量好、传输速率高等优势,就必须根据 CDMA 技术的特 点,做好 3G 正反向的功率控制系统的优化建设。


相关文档

CDMA系统中的联合功率控制技术
CDMA2000系统中的功率控制技术
cdma系统的功率控制
CDMA系统中的功率控制技术及过程分析
CDMA系统中功率控制算法的研究
CDMA系统功率控制技术
3G功率控制技术浅析
CDMA系统功率控制的性能分析与改进
CDMA 移动通信系统功率控制
CDMA卫星通信系统功率控制研究
电脑版