贵州省遵义四中2016-2017学年高二上学期期末数学试卷(理科) Word版含解析

2016-2017 学年贵州省遵义四中高二(上)期末数学试卷(理科) 一、选择题 1.双曲线 2x2﹣y2=8 的实轴长是( A.4 B.4 C.2 D.2 ) ) 2.已知命题 p:? x0∈R,x02+1<0,则( A.¬p:? x∈R,x2+1>0 B.¬p:? x∈R,x2+1>0 C.¬p:? x∈R,x2+1≥0 D.¬p:? x∈R,x2+1≥0 3.某单位有职工 75 人,其中青年职工 35 人,中年职工 25 人,老年职工 15 人, 为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本,若样本容量 为 15,则样本中的青年职工人数为( A.7 B.15 C.25 D.35 ) ,0) ) ) 4.抛物线 y=4x2 的焦点坐标是( A. (0,1) B. (0, ) C. (1,0) D. ( 5.在如图所示的“茎叶图”表示的数据中,众数和中位数分别是( A.23 与 26 B.31 与 26 C.24 与 30 D.26 与 30 6.“3<m<7”是“方程 + =1 的曲线是椭圆”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分条件又不必要条件 7.为了研究学生性别与是否喜欢数学课之间的关系,得到列联表如下: 喜欢数学 男 女 总计 40 40 80 不喜欢数学 80 140 220 总计 120 180 300 并经计算:K2≈4.545 P(K2≥k) k 请判断有( 0.100 2.706 0.050 3.841 0.010 6.635 0.001 10.828 )把握认为性别与喜欢数学课有关. C.99% D.95% ) A.5% B.99.9% 8.阅读如图的程序框图,若输入的 n 是 100,则输出的变量 S 的值是( A.5 049 B.5 050 C.5 051 D.5 052 9.点 P 在边长为 1 的正方形 ABCD 内运动,则动点 P 到定点 A 的距离|PA|<1 的概率为( A. B. ) C. D.π 10.如图,在三棱柱 ABC﹣A1B1C1 中,底面为正三角形,侧棱垂直底面,AB=4, AA1=6,若 E,F 分别是棱 BB1,CC1 上的点,且 BE=B1E,C1F= CC1,则异面直线 A1E 与 AF 所成角的余弦值为( ) A. B. C. D. ﹣ =1(a>0,b>0)的左、右顶点,P 是 11.已知 A,B 分别为双曲线 C: C 上一点,且直线 AP,BP 的斜率之积为 2,则 C 的离心率为( A. B. C. D. ) 12. B 在圆 x2+y2=1 上运动, 设 A, 且|AB|= 则| A.3 + |的最小值为( B.4 C. D. ) , 点 P 在直线 3x+4y﹣12=0 上运动, 二、填空题 13. 某校从高一年级学生中随机抽取 100 名学生, 将他们期中考试的数学成绩 (均 为整数)分成六段:[40,50) ,[50,60) ,…,[90,100]后得到频率分布直方 图(如图所示) .则分数在[70,80)内的人数是 . 14.从 1,2,3,4,5,6 这 6 个数字中,任取 2 个数字相加,其和为偶数的概 率是 . + =1 上一点, F1 , F2 分别是椭圆的左、右焦点,若 . 15 .点 P 是椭圆 |PF1||PF2|=12,则∠F1PF2 的大小 16.已知点 P 为双曲线 ﹣ =1(a>0,b>0)右支上的一点,点 F1,F2 分别 ,若 M 为△PF1F2 的内 . 为双曲线的左、右焦点,双曲线的一条渐近线的斜率为 心,且 S =S +λS ,则 λ 的值为 三、解答题 17.设数列{an}满足:a1=1,an+1=2an+1. (1)证明:数列{an}为等比数列,并求出数列{an}的通项公式; (2)求数列{n?(an+1)}的前 n 项和 Tn. 18.已知函数 f(x)=2 sinxcosx﹣cos2x,x∈R. (1)求函数 f(x)的单调递增区间; (2)在△ABC 中,内角 A、B、C 所对边的长分别是 a、b、c,若 f(A)=2,C= c=2,求△ABC 的面积 S△ABC 的值. 19.如图,在四棱锥 P﹣ABCD 中,PA⊥底面 ABCD,底面 ABCD 为直角梯形,AD ∥BC,∠BAD=90°,PA=AD=AB=2BC=2,过 AD 的平面分别交 PB,PC 于 M,N 两 点. (Ⅰ)求证:MN∥BC; (Ⅱ)若 M,N 分别为 PB,PC 的中点, ①求证:PB⊥DN; ②求二面角 P﹣DN﹣A 的余弦值. , 20.一台机器使用时间较长,但还可以使用.它按不同的转速生产出来的某机械 零件有一些会有缺点, 每小时生产有缺点零件的多少, 随机器运转的速度而变化, 如表为抽样试验结果: 转速 x(转/秒) 每小时生产有 缺点的零件数 y(件) (1)用相关系数 r 对变量 y 与 x 进行相关性检验; (2)如果 y 与 x 有线性相关关系,求线性回归方程; (3)若实际生产中,允许每小时的产品中有缺点的零件最多为 10 个,那么,机 器的运转速度应控制在什么范围内?(结果保留整数) 参考数据: xiyi=438,t=m2﹣1, yi2=291, ≈25.62. 16 11 14 9 12 8 8 5 参考公式:相关系数计算公式:r= 回归方程 = x+ 中斜率和截距的最小二乘估计公式分别为: = , = ﹣ . 21.已知平面内一动点 M 到点 F(1,0)距离比到直线 x=﹣3 的距离小 2.设动 点 M 的轨迹为 C. (1)求曲线 C 的方程; (2)若过点 F 的直线 l 与曲线 C 交于 A、B 两点,过点 B 作直线:x=﹣1 的垂线, 垂足为 D,设 A(x1,y1) ,B(x2,y2) . 求证:①x1?x2=1,y1?

相关文档

贵州省遵义四中2016-2017学年高一上学期期末数学试卷 Word版含解析
贵州省遵义四中2016-2017学年高二上学期第二次月考数学试卷(理科) Word版含解析
贵州省遵义四中2017-2018学年高二上学期期末数学试卷(理科) Word版含解析
【真题】2016-2017年贵州省遵义四中高二第一学期期末数学试卷(理科)含解析
2016-2017年贵州省遵义四中高二第二学期期中数学试卷(理科)【解析版】
贵州省遵义四中2016-2017学年高二上学期期末考试试题 数学(文). Word版含答案
贵州省遵义四中2017-2018学年高二上学期第二次月考数学试卷(理科) Word版含解析
贵州省遵义市航天高中2016-2017学年高二上学期期中数学试卷 Word版含解析
贵州省遵义四中2016-2017学年高二上学期第二次月考数学试卷(文科) Word版含解析
贵州省遵义四中2016-2017学年高二(上)期末数学试卷(理科)(解析版).doc
电脑版